Product of polylogarithms

Define the following

$$\mathscr{C}(\alpha , k) =\sum_{n\geq 1}\frac{1}{n^{\alpha}(n+k)}\,\,\, ; \,\,\,\,\mathscr{C}(1, k)=\frac{H_k}{k}$$

We can generalize

\begin{align}
\mathscr{C}(\alpha , k) &=\sum_{n\geq 1}\frac{1}{k\, n^{\alpha-1}}\left( \frac{1}{n}-\frac{1}{n+k}\right)\\ &= \frac{1}{k}\zeta(\alpha)-\frac{1}{k}\mathscr{C}(\alpha-1 , k)\\ &=   \frac{1}{k}\zeta(\alpha)-\frac{1}{k^2}\zeta(\alpha-1)+\frac{1}{k^2}\mathscr{C}(\alpha-2 , k)\\ &= \sum_{n=1}^{\alpha-1}(-1)^{n-1}\frac{\zeta(\alpha-n+1)}{k^n}+(-1)^{\alpha-1}\frac{H_k}{k^\alpha}
\end{align}

Hence we have the general formula

$$\mathscr{C}(\alpha , k) = \sum_{n=1}^{\alpha-1}(-1)^{n-1}\frac{\zeta(\alpha-n+1)}{k^n}+(-1)^{\alpha-1}\frac{H_k}{k^\alpha}$$

Dividing by \( \frac{1}{k^{\beta}}\) and summing w.r.t to \(k\) we have

$$\sum_{k\geq 1}\frac{\mathscr{C}(\alpha , k)}{k^{\beta}} = \sum_{n=1}^{\alpha-1}(-1)^{n-1}\zeta(\alpha-n+1)\zeta(\beta+n)+(-1)^{\alpha-1}\sum_{k\geq 1}\frac{H_k}{k^{\alpha+\beta}}$$

Now we use that

$$\sum_{n=1}^\infty \frac{H_n}{n^q}= \left(1+\frac{q}{2} \right)\zeta(q+1)-\frac{1}{2}\sum_{k=1}^{q-2}\zeta(k+1)\zeta(q-k)$$

Hence we have

$$\sum_{n=1}^\infty \frac{H_n}{n^{\alpha+\beta}}= \left(1+\frac{{\alpha+\beta}}{2} \right)\zeta({\alpha+\beta}+1)-\frac{1}{2}\sum_{k=1}^{{\alpha+\beta}-2}\zeta(k+1)\zeta({\alpha+\beta}-k)$$

And the generalization is the following formula

\begin{align}
\sum_{k\geq 1}\frac{\mathscr{C}(\alpha , k)}{k^{\beta}} &= \sum_{n=1}^{\alpha-1}(-1)^{n-1}\zeta(\alpha-n+1)\zeta(\beta+n) -\frac{1}{2}\sum_{n=1}^{{\alpha+\beta}-2}(-1)^{\alpha-1}\zeta(n+1)\zeta({\alpha+\beta}-n)\\ &+(-1)^{\alpha-1}\left(1+\frac{{\alpha+\beta}}{2} \right)\zeta({\alpha+\beta}+1)\end{align}

Interestingly we also have that

$$\sum_{k\geq 1}\frac{\mathscr{C}(\alpha , k)}{k^{\beta}}=\sum_{k\geq 1}\frac{\mathscr{C}(\beta, k)}{k^{\alpha}}$$

Generally we will use the symbol

$$\mathscr{H}(\alpha,\beta)=\sum_{k\geq 1}\frac{\mathscr{C}(\alpha , k)}{k^{\beta}}$$

So we have the symmetric property

$$\mathscr{H}(\alpha,\beta) = \mathscr{H}(\beta,\alpha)$$

$$\mathscr{H}(1,\beta)= \left(1+\frac{{\beta}}{2} \right)\zeta({\beta}+1)-\frac{1}{2}\sum_{k=1}^{{\beta}-2}\zeta(k+1)\zeta({\beta}-k)$$

ليست هناك تعليقات:

إرسال تعليق